Diagonal sums of doubly stochastic matrices
نویسندگان
چکیده
منابع مشابه
Subdirect sums of doubly diagonally dominant matrices
The problem of when the k-subdirect sum of a doubly diagonally dominant matrix (DDD matrix) is also a DDD matrix is studied. Some sufficient conditions are given. The same situation is analyzed for diagonally dominant matrices and strictly diagonally dominant matrices. Additionally, some conditions are also derived when card(S)>card(S1) which was not studied by Bru, Pedroche and Szyld [Electron...
متن کاملDoubly stochastic matrices of trees
In this paper, we obtain sharp upper and lower bounds for the smallest entries of doubly stochastic matrices of trees and characterize all extreme graphs which attain the bounds. We also present a counterexample to Merris’ conjecture on relations between the smallest entry of the doubly stochastic matrix and the algebraic connectivity of a graph in [R. Merris, Doubly stochastic graph matrices I...
متن کاملRandom doubly stochastic tridiagonal matrices
Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements abo...
متن کاملThe polytope of even doubly stochastic matrices
The polytope Q, of the convex combinations of the permutation matrices of order n is well known (Birkhoff’s theorem) to be the polytope of doubly stochastic matrices of order n. In particular it is easy to decide whether a matrix of order n belongs to Q,. . check to see that the entries are nonnegative and that all row and columns sums equal 1. Now the permutations z of { 1, 2, . . . . n} are i...
متن کاملExistence of Matrices with Prescribed Off-Diagonal Block Element Sums
Necessary and sufficient conditions are proven for the existence of a square matrix, over an arbitrary field, such that for every principal submatrix the sum of the elements in the row complement of the submatrix is prescribed. The problem is solved in the cases where the positions of the nonzero elements of A are contained in a given set of positions, and where there is no restriction on the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2021
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2021.1901844